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Goal

(I) In this lecture we want to discuss a beautiful application of
the theory developed so far to the spectral theory of a
compact Riemann surface X of genus ≥ 2. By the
uniformization theorem, any such surface is a quotient
X ' Γ\H with Γ a co-compact lattice in
PSL2(R) = SL2(R)/{±1} having no nontrivial torsion
points.

(II) We can associate to X two collections of real numbers: one
coming directly from the geometry of X , namely the set of
lengths of closed geodesics on X , and the second one coming
from spectral theory, namely the eigenvalues of the
Laplace-Beltrami operator on X . Our goal in this lecture is
to study the relation between these sets.
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Closed geodesics and their lengths

(I) Before doing that let’s define more carefully the two sets.
Each γ ∈ Γ K {1} is hyperbolic, i.e. satisfies |tr(γ)| > 2, thus
we can define

l(γ) = 2arccosh(
|tr(γ)|

2
).

Note that l(γ) depends only on the conjugacy class of γ in
PSL2(R).

(II) More geometrically, the action of γ on H is conjugated to
z → e l(γ)z . There is a unique geodesic in H stabilized by γ,
called the axis a(γ) of γ. It is naturally oriented, by going
from the unique repulsive fixed point of γ to the unique
attractive fixed point (both points being on a(γ)). Then l(γ)
is the length of the oriented closed geodesic π(a(γ)) on X ,
where π : H → X is the canonical projection.
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Closed geodesics and their lengths

(I) All geodesics will be oriented from now on. It is an excellent
exercise to prove that sending γ to its axis yields a bijection
between nontrivial conjugacy classes in Γ and closed
(oriented, always from now on) geodesics on X .

(II) A closed geodesic on X is called primitive (or prime) if it is
not the nth iterate (for some n ≥ 2) of another closed
geodesic. Any closed geodesic is an nth iterate of a unique
primitive closed geodesic, and this for a unique n ≥ 1.

(III) Let LX be the multi-set of lengths of all primitive closed
geodesics on X , taken with multiplicities.
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Laplacian spectrum

(I) The G -invariant hyperbolic measure dµ(z) = dxdy/y2 on H
descends to X and we can form L2(X ) = L2(X , dµ(x)), with

〈f , g〉 =

∫
X
f (x)g(x)dµ(x).

(II) The Laplace-Beltrami operator ∆ on C∞(H )

∆ = −y2(
∂2

∂x2
+

∂2

∂y2
)

commutes with the action of G and descends therefore to an
operator ∆ on C∞(X ).
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Laplacian spectrum

(I) We can thus see ∆ as an unbounded operator on L2(X ) and
try to study its spectrum. One checks using Stokes’ formula
that 〈∆f , g〉 = 〈f ,∆g〉 for f , g ∈ C∞(X ) and that

〈∆f , f 〉 ≥ 0

for all f ∈ C∞(X ), with equality if and only if f is constant.

(II) In particular all eigenvalues of ∆ on C∞(X ) are ≥ 0 and the
eigenvalue 0 occurs with multiplicity 1.

(III) We will see that L2(X ) has an orthonormal basis consisting
of eigenvalues of ∆ and each eigenspace is finite
dimensional. Let ∆(X ) be the set of eigenvalues of ∆ on
C∞(X ), each eigenvalue occurring with a multiplicity equal
to the dimension of the eigenspace.
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The Selberg trace formula

(I) We can now state the amazing theorem we’re looking for:

Theorem (Selberg’s trace formula for compact hyperbolic
curves) Let g ∈ C∞c (R) be an even function and let h = ĝ
be its Fourier transform, thus h(x) =

∫
R e−ixtg(t)dt. Then

∑
λ∈∆(X )

h(

√
λ− 1

4
) =

area(X )

2π

∫ ∞
0

xh(x) tanh(πx)dx

+
1

4π

∑
l∈LX

∑
n≥1

l

sinh nl
2

ĥ(nl),

all sums and integrals being absolutely convergent.

Note that the statement makes sense, i.e. it is independent
of the choice of the square root of λ− 1

4 , since h is even.



The Selberg trace formula

(I) This theorem has many deep consequences (which are not
obtained without a certain amount of work...) and
refinements, which we won’t have the time to discuss. But
here are a few beautiful results one can get using the trace
formula.

(II) First, Huber’s theorem: two compact hyperbolic surfaces
X ,X ′ are isospectral (i.e. ∆(X ) = ∆(X ′)) if and only if
LX = LX ′ . Next, McKean’s theorem: for a given X there
are only finitely many X ′ up to isometry which are
isospectral to X .

(III) Weyl’s estimate: if 0 = λ0 < λ1 ≤ λ2 ≤ ... is the sequence
of all eigenvalues of ∆, then

lim
n→∞

λn
n

=
4π

area(X )
.
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The Selberg trace formula
(I) Once one has the Weyl estimate we can refine the trace

formula (by an approximation argument) by allowing any
even holomorphic function h on the domain |Im(z)| < 1

2 + ε
such that h(z) = O((1 + |z |2)−1−ε) (for some ε > 0).

(II) One then obtains (with work!) the prime geodesic theorem,
analog of the prime number theorem: the number of l ∈ LX

with e l ≤ x is asymptotically x/ log x as x →∞.

(III) Finally, the Selberg zeta function

ZX (s) =
∏
l∈LX

∏
n≥0

(1− e−l(s+n)),

a priori convergent for Re(s) > 1, extends to a holomorphic
function on C satisfying a functional equation
ZX (s) = G (s)ZX (1− s) for an explicit, but rather
complicated function G .
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”L’̂ıle aux enfants”: Casimir

(I) To prove the trace formula, we will reformulate the problem
in terms of representation theory and use a very general
Selberg trace formula for compact quotients, coupled with a
fine study of the Casimir operator and of the spherical Hecke
algebra of G .

(II) To work with our usual G = SL2(R) we pull back our
Γ ⊂ PSL2(R) to G and still denote Γ the resulting subgroup
of G .

(III) A first key observation is that we can identify (since K is
compact)

L2(X ) ' L2(Γ\G )K .

Thus our problem is closed related to the study of L2(Γ\G )
and that of K -invariants in unitary representations of G .
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”L’̂ıle aux enfants”: Casimir

(I) Passing to K -invariants in the GGPS decomposition

L2(Γ\G ) '
⊕̂
π∈Ĝ

π⊕m(π)

and letting
Ĝ sph = {π ∈ Ĝ |πK 6= 0}

yields

L2(X ) '
⊕̂

π∈Ĝ sph

(πK )⊕m(π).

(II) The classification theorem describes Ĝ sph completely: it
consists of the unitary principal series attached to characters
a→ |a|s with s ∈ iR+, and of the complementary series of
parameter s ∈ (0, 1). Call these representations simply πs
with s ∈ iR+ ∪ (0, 1).
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”L’̂ıle aux enfants”: Casimir

(I) A second key observation (which is not really an observation,
but rather a brutal computation that I will skip) is that the
Casimir operator C ∈ Z (U(g)) acting on C∞(G ) descends
(by invariance) to an operator on C∞(H ) ' C∞(G )K and
this is precisely 2∆:

C (f ) = 2∆(f ), f ∈ C∞(G )K ' C∞(H ).

(II) It turns out that C acts on the smooth vectors π∞ of each

π ∈ Ĝ by a scalar. For instance, C acts by 1−s2

2 on π∞s , as
one can easily check by hand. In particular the eigenvalue of
C determines s ∈ iR+ ∪ (0, 1) uniquely.

(III) Another key fact, which we will prove soon is that
dimπK = 1 for π ∈ Ĝ sph, and each v ∈ πK is smooth and
an eigenvector of C .
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”L’̂ıle aux enfants”: Casimir

(I) Combining the previous observations gives

Theorem L2(X ) has an ON-basis consisting of smooth
functions that are eigenvectors of C and thus of ∆.



”L’̂ıle aux enfants”: Casimir
(I) We want to express m(πs) in terms of the eigenvalue 1−s2

4
only. For this consider the space

Ms = {f ∈ C∞(X )|∆f =
1− s2

4
f }.

Functions in Ms are called Maass forms.

(II) We then have

Theorem We have dimMs = m(πs), in particular Ms is
finite dimensional.

(III) This follows immediately from the decomposition

L2(X ) '
⊕

s∈iR≥0∪(0,1)

(Cfs)⊕m(πs),

induced by the GGPS decomposition, passage to
K -invariants and the previous results.

(IV) It follows from the above discussion that m(πs) > 0 if and
only if s = 2irj for some j ≥ 0, and then m(πs) is the
multiplicity of λj as eigenvalue of ∆ on C∞(X ).
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Gelfand pairs

(I) The study of K -invariants in irreducible unitary
representations of G will be crucial, so we spend some time
developing the basic formalism in great generality.

(II) Let G be a locally compact unimodular group and let K be a
compact subgroup. We let dk be the unique probability Haar
measure on G and dg a Haar measure on G . Let Cc(G//K )
be the space of continuous compactly supported functions on
G which are bi-K -invariant, i.e. f (k1gk2) = f (g) for g ∈ G ,
k1, k2 ∈ K .

(III) We can construct elements of Cc(G//K ) by starting with an
arbitrary f ∈ Cc(G ) and considering

fK (x) =

∫
K2

f (k1xk2)dk1dk2.
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Gelfand pairs

(I) Define L1(G//K ) and C∞c (G//K ) (if G is a Lie group) in
the obvious way. One easily checks that Cc(G//K ) and
L1(G//K ) are algebras for the convolution product and
Cc(G//K ) is dense in L1(G//K ).

(II) If V ∈ Rep(G ), then for all v ∈ V and f ∈ Cc(G//K ) we
have f .v ∈ VK , since

k .(f .v) =

∫
G
f (g)kg .vdg =

∫
G
f (kg)kg .vdg =

∫
G
f (g)g .vdg = f .v .

In particular VK becomes a module over Cc(G//K ).
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Gelfand pairs

(I) We say that (G ,K ) is a Gelfand pair if Cc(G//K ) is
commutative. This is equivalent to saying that L1(G//K ) is
commutative. A key source of Gelfand pairs comes from the
following beautiful and easy result.

Theorem (Gelfand’s trick) Suppose that there is an
automorphism ι : G → G with ι ◦ ι = id and ι(x) ∈ Kx−1K
for x ∈ G . Then (G ,K ) is a Gelfand pair.



Gelfand pairs
(I) For instance if G = SL2(R) and K = SO2(R) we can take

ι(x) the inverse of the transpose of x . The condition comes
down to xT ∈ KxK for all x ∈ G . This follows from the
Cartan decomposition G = KAK (exercise), which reduces
everything to the case x ∈ A, but then x = xT and we are
done. This kind of argument generalizes to real reductive
groups and their maximal compact subgroups.

(II) The proof of the theorem is simple and beautiful. If
f ∈ Cc(G ) let f̄ (x) = f (ι(x)) and f̃ (x) = f (x−1). The
hypothesis implies that f̄ = f̃ for f ∈ Cc(G//K ). On the
other hand, the uniqueness (up to scalar) of the Haar
measure gives the existence of a constant c > 0 such that∫
G f̄ (x)dx = c

∫
G f (x)dx for all f ∈ Cc(G ). Since ι2 = 1, we

have c2 = 1, thus c = 1. This easily implies that
f̄ ∗ ḡ = f ∗ g . On the other hand, the unimodularity of G
yields ˜g ∗ f = f̃ ∗ g̃ .
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Gelfand pairs
(I) Since f̄ = f̃ for f ∈ Cc(G//K ), we conclude that for all

f , g ∈ Cc(G//K )

f ∗ g = f̄ ∗ ḡ = f̃ ∗ g̃ = ˜g ∗ f = g ∗ f ,
thus f ∗ g = g ∗ f and the theorem is proved.

(II) For us the most important application of Gelfand pairs is the
following beautiful result (whose converse also holds, but is
quite a bit more delicate, using the Gelfand-Raikov theorem
which we haven’t discussed). Let

G sph = {π ∈ Ĝ |πK 6= 0}.

Theorem If (G ,K ) is a Gelfand pair and V ∈ G sph, then
dimVK = 1 and there is a morphism of algebras
χπ : Cc(G//K )→ C such that f .v = χπ(f )v for v ∈ VK

and f ∈ Cc(G//K ).
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Gelfand pairs

(I) Of course, it suffices to prove that dimVK = 1. We claim
that VK is irreducible under Cc(G//K ) when V ∈ Ĝ , i.e. for
any v ∈ VK K {0} the closure of Cc(G//K ).v is VK . Pick
any w ∈ VK and ε > 0. By irreducibility of V , Cc(G ).v is
dense in V , thus we can find f ∈ Cc(G ) with ||f .v −w || < ε.

(II) Since v is K -invariant, a simple calculation yields

fK .v =

∫
G

∫
K2

f (k1xk2)x .vdx =

∫
K

∫
G
f (k1x)x .vdxdk1 =

∫
K
k .(f .v)dk.
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Gelfand pairs

(I) Since v →
∫
K k.vdk is the orthogonal projection of V onto

VK (lecture 2), we deduce that

||fK .v − w || ≤ ||f .v − w || ≤ ε

and since fK ∈ Cc(G//K ), the claim is proved.

(II) Now since by assumption L1(G//K ) is a commutative
Banach algebra with a natural involution f → (g → f (g−1)),
an argument as in the proof of Schur’s lemma (lecture 2)
shows that the only irreducible unitary reps. of L1(G/K ) are
1-dimensional, thus dimVK ≤ 1 and we are done.
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Gelfand pairs

(I) Suppose now that G is a real Lie group and (G ,K ) is a
Gelfand pair. If π ∈ Ĝ , consider the restriction
χπ : Sph→ C of χπ : Cc(G//K )→ C to the spherical
Hecke algebra Sph = C∞c (G//K ).

(II) It is important to interpret χπ(f ) as a trace. Namely, the
operator Tf : π → π, v → f .v has image inside πK , thus it is
trivially of trace class and tr(Tf ) = χπ(f ).
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trivially of trace class and tr(Tf ) = χπ(f ).



The spherical unitary dual and Hecke algebra

(I) Let’s come back to earth and get our hands dirty with
G = SL2(R). Keep the usual notations A,N,K , etc. We
want to make χπ as explicit as possible for π ∈ Ĝ .

(II) Recall that πs is realised as a space of functions on G , and
elements of πKs correspond to certain functions on
G/K 'H . The explicit description of πs |K (lecture 1) then
shows that

πKs = Cfs ,

where the spherical vector fs is the function on H

fs(z) = Im(z)
1+s

2 .
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The spherical unitary dual and Hecke algebra

(I) Taking f ∈ Sph and evaluating at i the identity
f .fs = χπs (f )fs , we obtain

χπs (f ) =

∫
G
f (g)fs(g .i)dg .

(II) The Haar measure decomposes with respect to the Iwasawa
decomposition G = ANK∫
G
F (g)dg =

∫
K

∫
R

∫
R
F (

(
eu/2 0

0 e−u/2

)(
1 x
0 1

)
k)dkdudx .
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The spherical unitary dual and Hecke algebra

(I) If F is right K -invariant, this simplifies to∫
G
F (g)dg =

∫
R

∫
R
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(
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0 e−u/2

)(
1 x
0 1

)
)dudx .

(II) We conclude that

χπs (f ) =

∫
R2
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(
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0 e−u/2
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0 1

)
)eu

1+s
2 dudx .
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The spherical unitary dual and Hecke algebra

(I) Introducing the Harish-Chandra transform of f

HC (f )(u) =

∫
R
f (

(
eu/2 x

0 e−u/2

)
)dx

= eu/2

∫
R
f (

(
eu/2 0

0 e−u/2

)(
1 x
0 1

)
)dx

and the Fourier transform ĝ(u) =
∫
R g(x)e iuxdx , we can

rewrite
χπs (f ) = ĤC (f )(

s

2i
).



The spherical unitary dual and Hecke algebra

(I) W can describe very nicely Sph thanks to:

Theorem (Harish-Chandra) The map f → HC (f ) is an
isomorphism (of vector spaces)

Sph ' C∞c (R)even := {f ∈ C∞c (R)| f (x) = f (−x).}

Moreover we have the ”Fourier inversion” formula

f (1) =
1

2π

∫ ∞
0

r ĤC (f )(r) tanh(πr)dr .



The spherical unitary dual and Hecke algebra

(I) Any f ∈ Sph is determined by its restriction to A, since

G = KAK . Moreover if f (

(
a 0
0 a−1

)
) = u(a), then

u(a) = u(a−1) since f is bi-K -invariant and(
0 −1
1 0

)(
a 0
0 a−1

)(
0 1
−1 0

)
=

(
a−1 0

0 a

)
.

(II) Now a funny real analysis exercise shows that there is
F ∈ C∞c ([1,∞)) such that

f (

(
a 0
0 a−1

)
) = F (

a2 + a−2

2
).
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The spherical unitary dual and Hecke algebra

(I) It follows from here that

f (g) = F (
tr(ggT )

2
)

for all g ∈ G : both terms are in Sph and they have the same
restriction to A.

(II) We deduce that F → fF = (g → F ( tr(gg
T )

2 )) gives an
isomorphism of vector spaces

C∞c ([1,∞)) ' Sph

and

HC (fF )(u) =

∫
R
F (cosh(u) +

x2

2
)dx .

It is therefore clear that HC (f ) ∈ C∞c (R)even.
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The spherical unitary dual and Hecke algebra
(I) In order to prove the first part, it suffices to prove that the

Abel transform

A(F )(a) =

∫
R
F (a +

x2

2
)dx

gives an isomorphism

C∞c ([1,∞)) ' C∞c ([1,∞)).

(II) For this it suffices (exercise: why?) to check that

F (a) = − 1

2π

∫
R
A(F )′(a +

x2

2
)dx .

Indeed, we have (polar coordinates!)∫
R
A(F )′(a +

x2

2
)dx =

∫
R

∫
R
F ′(a +

x2 + y2

2
)dxdy =

= 2π

∫ ∞
0

F ′(a +
r2

2
)rdr = 2π

∫ ∞
a

F ′(x)dx = −2πF (a).
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The spherical unitary dual and Hecke algebra
(I) We conclude the proof using that even C∞c functions on R

are related to C∞c functions on [1,∞) by g(x) = F (cosh(x))
(exercise). This finishes the first part.

(II) For the Fourier inversion formula let g = HC (f ) and

f (g) = F ( tr(gg
T )

2 ), so that

g(u) =

∫
R
F (cosh u +

x2

2
)dx = A(F )(cosh u).

It follows that (make x = et/2 − e−t/2)

f (1) = F (1) = − 1

2π

∫
R
A(F )′(1 +

x2

2
)dx =

= − 1

2π

∫
R
A(F )′(cosh t) cosh(t/2)dt =

− 1

2π

∫
R
g ′(t)

cosh(t/2)

sinh t
dt = − 1

2π

∫
R

g ′(t)

et/2 − e−t/2
dt.
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The spherical unitary dual and Hecke algebra

(I) Since g is even, Fourier inversion gives

g(x) =
1

π

∫ ∞
0

ĝ(u)e−iutdu, g ′(x) = − i

π

∫ ∞
0

uĝ(u)e−iutdu

and

f (1) =
i

2π2

∫ ∞
0

uĝ(u)

∫
R

e−iut

et/2 − e−t/2
dt.

(II) Thus we are done if we prove that∫
R

e−iut

et/2 − e−t/2
dt = −iπ tanh(πu), u > 0.
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The spherical unitary dual and Hecke algebra

(I) This can be proved using the residue formula, but we can
also argue via Poisson summation:∫

R

e−iut

et/2 − e−t/2
dt = −2i

∫ ∞
0

sin(ut)

et/2(1− e−t)
dt =

−2i
∑
n≥0

∫ ∞
0

Im(e iut)e−(n+1/2)tdt

= −2i
∑
n≥0

u

u2 + (n + 1/2)2
= −i

∑
n∈Z

u

u2 + (n + 1/2)2
.

(II) Now observe that f̂a(x) = 2a
a2+x2 where fa(x) = e−a|x | and

apply Poisson summation to obtain∑
n∈Z

u

u2 + (n + 1/2)2
= π

∑
n∈Z

e−2πu|n|e iπn = π tanh(πu).
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Trace formula for compact quotients

(I) Let G be a unimodular real Lie group and let Γ be a discrete
co-compact subgroup of G . Fix a Haar measure dg on G .
We have already seen that we can decompose

L2(Γ\G ) '
⊕̂
π∈Ĝ

π⊕m(π)

with m(π) ∈ Z≥0.

(II) Moreover, we saw that each f ∈ C∞c (G ) defines an operator
Tf = f ∗ ϕ on L2(Γ\G ), which is Hilbert-Schmidt and even
(thanks to the Dixmier-Malliavin theorem) of trace class.
Our goal will be to compute this trace in two different ways:
in representation-theoretic terms using the previous
decomposition, and ”geometrically”, using orbital integrals
on G .
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Trace formula for compact quotients
(I) The representation-theoretic computation is ”trivial”: each

π ∈ Ĝ for which m(π) > 0 is a sub-representation of
L2(Γ\G ) and Tf preserves π, thus the restriction of Tf to π
is of trace class. Moreover, picking an ON-basis in each π we
immediately obtain

tr(Tf ) =
∑
π∈Ĝ

m(π)trπ(f ),

where we write π(f ) = Tf |π for the restriction of Tf to π.

(II) We study now the ”geometric” part. Recall that

Tf (ϕ)(x) =

∫
Γ\G

Kf (x , y)ϕ(y)dy

where

Kf (x , y) =
∑
γ∈Γ

f (x−1γy) ∈ C∞(Γ\G × Γ\G ).
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Trace formula for compact quotients

(I) First, let us prove the

Theorem We have

tr(Tf ) =

∫
Γ\G

Kf (x , x)dx .

(II) By Dixmier-Malliavin, WLOG f = f1 ∗ f2 with
f1, f2 ∈ C∞c (G ). Then Tf = Tf1Tf2 and if ei is an ON-basis
of L2(Γ\G ) then letting f ∗1 (g) = f1(g−1) (so T ∗f1 = Tf ∗1

)

tr(Tf ) =
∑
i

〈Tf1Tf2ei , ei 〉 =
∑
i

〈Tf2ei ,T
∗
f1ei 〉

=
∑
i ,j

〈Tf2ei , ej〉〈Tf ∗1
ei , ej〉.
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Trace formula for compact quotients

(I) On the other hand a direct calculation shows that

〈Tf2ei , ej〉 =

∫
Γ\G×Γ\G

Kf2(x , y)ei (y)ej(x)dxdy = 〈Kf2 , ej⊗ei 〉,

the latter product being in L2(Γ\G × Γ\G ). Similarly for
〈Tf ∗1

ei , ej〉.

(II) Since the ej ⊗ ei form an ON-basis of L2(Γ\G × Γ\G ), we
conclude that

tr(Tf ) = 〈Kf2 ,Kf ∗1
〉 =

∫
Γ\G×Γ\G

Kf2(x , y)Kf ∗1
(x , y)dxdy .

Since Kf ∗1
(x , y) = Kf1(y , x), we finally obtain

tr(Tf ) =

∫
Γ\G×Γ\G

Kf2(x , y)Kf1(y , x)dxdy .



Trace formula for compact quotients

(I) On the other hand a direct calculation shows that

〈Tf2ei , ej〉 =

∫
Γ\G×Γ\G

Kf2(x , y)ei (y)ej(x)dxdy = 〈Kf2 , ej⊗ei 〉,

the latter product being in L2(Γ\G × Γ\G ). Similarly for
〈Tf ∗1

ei , ej〉.

(II) Since the ej ⊗ ei form an ON-basis of L2(Γ\G × Γ\G ), we
conclude that

tr(Tf ) = 〈Kf2 ,Kf ∗1
〉 =

∫
Γ\G×Γ\G

Kf2(x , y)Kf ∗1
(x , y)dxdy .

Since Kf ∗1
(x , y) = Kf1(y , x), we finally obtain

tr(Tf ) =

∫
Γ\G×Γ\G

Kf2(x , y)Kf1(y , x)dxdy .



Trace formula for compact quotients

(I) Now writing the equality Tf = Tf1Tf2 in terms of Kf1 ,Kf2 ,Kf

immediately yields (equality of continuous functions...)

Kf (x , y) =

∫
Γ\G

Kf1(x , z)Kf2(z , y)dz ,

thus we conclude that

tr(Tf ) =

∫
Γ\G

Kf (x , x)dx .



Trace formula for compact quotients
(I) We want to split∫

G
Kf (x , x)dx =

∫
G

(
∑
γ∈Γ

f (x−1γx))dx

according to conjugacy classes in Γ.

(II) To justify the various operations we will do, it is convenient
to isolate certain topological properties that are fairly simple
to prove and left to the reader. Let Γγ , resp. Gγ be the
centralizer of γ in Γ, resp. G . Thus Γγ = Gγ ∩ Γ and so we
have a natural bijection

Γ\ΓGγ ' Γγ\Gγ .

One easily checks that ΓGγ is closed in G , its image Γ\ΓGγ
in Γ\G is closed, thus compact, and the previous bijection is
a homeomorphism. In particular Γγ is a co-compact lattice in
Gγ and this implies that Gγ is unimodular.
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Trace formula for compact quotients

(I) Next, let {Γ} be a set of representatives for the Γ-conjugacy
classes of elements of G . If γ ∈ Γ let
ccG (γ) = {xγx−1| x ∈ G} be the conjugacy class of γ in G .

(II) One easily checks that∐
γ∈{Γ}

(Γγ\G × {γ})→ G , (Γγx , γ)→ xγx−1

is a proper map (i.e. the inverse image of a compact set is
compact), thus a closed map, and from here one deduces
that ccG (γ) is closed in G and for any compact set K ⊂ G
there are only finitely many γ ∈ {Γ} such that
ccG (γ) ∩ K 6= ∅.



Trace formula for compact quotients

(I) Next, let {Γ} be a set of representatives for the Γ-conjugacy
classes of elements of G . If γ ∈ Γ let
ccG (γ) = {xγx−1| x ∈ G} be the conjugacy class of γ in G .

(II) One easily checks that∐
γ∈{Γ}

(Γγ\G × {γ})→ G , (Γγx , γ)→ xγx−1

is a proper map (i.e. the inverse image of a compact set is
compact), thus a closed map, and from here one deduces
that ccG (γ) is closed in G and for any compact set K ⊂ G
there are only finitely many γ ∈ {Γ} such that
ccG (γ) ∩ K 6= ∅.



Trace formula for compact quotients

(I) This being said, we can safely write (recall that f ∈ C∞c (G ))∫
Γ\G

(
∑
γ∈Γ

f (x−1γx))dx =

∫
Γ\G

∑
γ∈{Γ}

∑
g∈Γγ\Γ

f (x−1g−1γgx)dx =

=
∑
γ∈{Γ}

∫
Γγ\G

f (x−1γx)dx .

(II) On the other hand,∫
Γγ\G

f (x−1γx)dx =

∫
Gγ\G

∫
Γγ\Gγ

f ((gh)−1γgh)dgdh

= vol(Γγ\Gγ)

∫
Gγ\G

f (x−1γx)dx .
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Trace formula for compact quotients
(I) In the above formula one starts by choosing a Haar measure

on Gγ , then takes the quotient measure on Gγ\G and on
Γγ\Gγ (we put the counting measure on Γ and its
subgroups). Combining the two expressions for tr(Tf ) yields:

Theorem (Selberg’s trace formula for compact quotients)
If Γ is a co-compact lattice in a real Lie group G , then for all
f ∈ C∞c (G )∑

π∈Ĝ

m(π, Γ)tr(π(f )) =
∑
γ∈{Γ}

vol(Γγ\Gγ)Oγ(f ),

where
m(π, Γ) = dimHomG (π, L2(Γ\G ))

and

Oγ(f ) =

∫
Gγ\G

f (x−1γx)dx .



Trace formula for compact quotients
(I) Let’s suppose that G is abelian. By Schur’s lemma, Ĝ

consists of all unitary (continuous of course) characters
χ : G → S1 of G . One checks very easily that m(χ, Γ) = 1 if
χ(Γ) = {1} and 0 otherwise. Let’s compute tr(χ(f )).

(II) If v is a nonzero vector in the space of χ, we have

χ(f ).v =

∫
G
f (g)g .vdg =

∫
G
f (g)χ(g)vdg = f̂ (χ−1)v ,

thus tr(π(χ)) = f̂ (χ−1), with

f̂ (χ) :=

∫
G
f (g)χ(g)dg .

(III) On the other hand Oγ(f ) = f (γ) and so the trace formula
yields a general abelian Poisson summation formula∑

χ∈Ĝ ,χ(Γ)={1}

f̂ (χ) = vol(Γ\G )
∑
γ∈Γ

f (γ).
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